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1 TheMobile RobotNavigation Problem

Mobile RobotNavigation Problem

In a fast-changing world, automating human work is becoming a neces-
sity to keep businesses running. Not only does automation prevent hu-
mans from doing dangerous and dull work, it also provides a solution to
the labor shortages seen in this line of work. Among other technologies,
we develop robust autonomous systems, specifically Autonomous Mobile
Robots (AMRs), for reliable operation in industrial applications like surveil-
lance, inspection, logistics, and agriculture. In this article we want to high-
light one of the major technical challenges we face in developing this mo-
bile robot navigation technology. This challenge deals with deciding the
steering and velocity commands an AMR needs to perform a given task,
whose solution is non-unique and far from trivial.

Autonomous Guided Vehicles (AGVs), which are the predecessors of AMRs, were
developed in the 1950’s [31]. These vehicles relied on fixed infrastructure being
present in the environment, to be used as guidance, hence the name. On one
hand, the algorithms required inside the vehicle were simple. However, instal-
lation costs were high, and therefore AGV usage was limited. In addition, due to
the simplicity of the solution, it could be applied only to use cases where high
accuracy was not required and to environments with little to no uncertainty.

Next to the growing demand for robotized solutions, additional challenges
emerged that AGVs could not cope with. For instance, factories, where robots
and people share the same space, would require the AGVs to detect obstacles
in their surroundings to avoid collisions. In the presence of static obstacles that
were not initially present, it would also require that the vehicle could find a way
to circumvent these obstacles. In turn, this also would mean that the robot
needs to localize itself in the environment at any location, and not only at the
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places where the fixed infrastructure allows it.

To tackle those challenges, AGV technology evolved into AMR technology [3].
This also means that the complexity of the algorithms needed in the vehicle in-
creased significantly. One of the main enablers of AMRs has been the advent of
the open-source Robot Operating System (ROS) [14], and together with the de-
clining costs of electronics, the total cost of ownership for an autonomous mo-
bile platformdecreased dramatically, making itmore feasible to use the technol-
ogy in a wide variety of applications. ROS in its core is a middleware framework,
which allows different software components to communicate not only within a
single robot but also across multiple machines. On top of that, the open-source
community has developed a stack of software modules offering a wide range of
functionalities for robot localization, navigation, and data visualization, among
others. The community is very active and in recent years a new version of ROS,
ROS2 [23], was released, which improves not only the communication layer be-
tween modules but also extends the capabilities of its functional modules.

In this article, we will focus on mobile robot navigation. Consider the situ-
ation in Figure 1.1, in which a mobile robot needs to reach a predefined area.
Along the way to get there, the robot will not only encounter the fixed struc-
ture of the environment (i.e. walls, doors, etc.) but also objects which can be
moved from time to time, and people, who are constantly on the move. Motion
planning algorithms deal with the problem of finding a sequence of velocity and
steering commands that will result in themobile robot successfully reaching the
desired target while keeping the integrity of the environment, its actors, and of
the robot itself. Successful completion of the navigation task is also subject to
certain constraints and performance criteria, which depend on the application.
In logistics applications for instance, maximum time, and velocity, are relevant.
In other applications like precision agriculture, navigation accuracy plays a ma-
jor role.

In the coming sections, we will dive into the architecture of the mobile robot
navigation software available for ROS2, and in particular into the different mo-
tion controllers that are available.
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?

Static obstacles

Target area

Dynamic obstacles

Figure 1.1: The mobile robot navigation problem: How to generate a set of ve-
locity commands to let the robot reach its target area?



2 ROS2NavigationArchitecture

Industry Standard architecture

ROS2 uses the industry standard architecture formobile robot navigation,
which consistsmainly of three blocks: environment representation, global
path planning, and local motion control. The environment is represented
using costmaps, indicating the presence of fixed infrastructure, together
with static and dynamic obstacles. Path planning aims to find a collision-
free path towards the desired target, and motion control generates veloc-
ity and steering commands to guide the vehicle along the planned path
towards the target. In this section, we will provide details on how these
modules work and interact with each other.

The mobile robot navigation architecture of ROS2 [17] is summarized in the dia-
gram shown in Figure 2.1. The task coordinationmodule is in charge of the high-
level coordination of the navigation modules, which in ROS2 is implemented us-
ing Behavioral Trees [18]. The global and local costmaps are used to represent
the fixed environment, as well as the static and dynamic obstacles [19]. Path
planning [21, 30] is in charge of finding collision-free paths between given start
and target poses. Themotion controller [20, 9] module uses the generated path
to create velocity and steering commands that guide the robot toward the de-
sired target. Finally, the odometry control module makes sure that the velocity
and steering commands are properly executed in themachine. We will dive into
themost relevant modules for the core navigation functionality: costmaps, path
planning, and motion control.

For navigation purposes, the environment around the robot is represented
bymeans of cells on the costmap’s grid. Cells in such a grid contain a single num-
ber that shows whether they are free or occupied. These cells are also “inflated”
depending on the robot’s dimensions such that the cells around the occupied
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Figure 2.1: ROS2 robot navigation architecture: Environment is described as
geometric grid-costmaps of the environment

cells indicate proximity to an obstacle. Exact collisions can not be detected at
this stage since they also depend on the robot’s orientation, especially for non-
symmetric robot footprints. The fixed infrastructure is typically represented in
the global costmap, which uses the map of the environment as input. The static
and dynamic obstacles are represented in the local costmap, which uses inputs
from sensors like LiDAR range finders, sonar sensors, 3D cameras, etc.

The navigation algorithm itself consistsmainly of two steps, global path plan-
ning, and local motion control. In the first step, global path planning (from now
on simply referred to as path planning), the idea is to find a collision-free se-
quence of poses (i.e. positions and orientations) that connect a starting pose to
a target pose. The starting pose is the current pose of the robot with respect to
the map’s origin (i.e. its localization pose) and the target pose is chosen within
the target area. The path planner uses the global costmap together with the ge-
ometric footprint of the robot, especially for non-symmetric footprints, to assess
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whether it will be in collision with the environment. Path planners initially only
use information from the fixed environment, therefore as the robot navigates
towards the target pose, it might encounter obstacles that were previously un-
known as shown in Figure 2.2. These unknownobstacles can be dealt with by the
local motion controller. In addition, path planners take into account the robot’s
kinematic constraints, i.e. when robots cannot move in all directions and first
have to rotate. In fact, themost common drivingmechanism in industrial robots
is the differential drive, which cannot drive the robot sideways, thus exhibiting
a kinematic constraint. Other examples of robots with multiple kinematic con-
straints are robots steered by their front wheel, which inmany cases is classified
as an “Ackermann steering” [33]. These robots have kinematic constraints at the
rear caster wheels and at the steering wheel.

In the second step, local motion control (from now on simply referred to as
motion control) is in charge of generating the actual velocity commands that are
executed by the robot. The motion controller uses the generated global path to
guide the robot towards the target pose. The resulting sequence of poses, each
associated with a particular point in time, is known as the local trajectory of the
robot. As the robot makes progress, static obstacles that were not known a pri-
ori might be blocking the initial global path. Many motion controllers deal inter-
nally with this situation and generate velocities that drive the robot around ob-
stacles, resulting in local trajectories that largely deviate from the original global
path as shown at the top of Figure 2.2. An alternative is to request global path
re-planning, resulting in a new collision-free path, which can be closely followed
by the motion controller as shown at the bottom of Figure 2.2. The high-level
component task coordination is thus in charge of harmonizing path planning
and motion control to complete the navigation task.

In the remaining of this article, we will focus on motion control, and we as-
sume a global path is available or can be requested at any time. For path plan-
ning there existmultiple algorithms, fromclassical A*, Rapidly-exploring random
trees (RRT) [7], to Machine Learning path planning [2]. An overview of planners
available in ROS2 can be found here [22].
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Global path

Local trajectory

Global path

Local trajectory

Re-planned global path

Figure 2.2: For obstacles that are not previously known, two approaches are
followed: Motion controller plans a new trajectory (top), or a new global path is
generated (bottom)



3 UnderTheSurfaceofROS2MotionCon-

trollers

In this section we will dive into the details of the available ROS2 motion con-
trollers [16].



ROS2 Motion Control Comparison 10

3.1 DWBMotion Controller

DWB in a nutshell
The DWB motion controller, which is the successor of DWA, uses a trajec-
tory generation and selection approach to enable amobile robot to follow
a desired global path while avoiding static and dynamic obstacles. The
rate at which this generation and selection process happens is defined by
the controller_frequency parameter. Further, the criteria for selecting
a trajectory to be executed from a set of generated trajectories can be
configured via user or application-specific cost functions called critics.

3.1.1 The DynamicWindowApproach (DWA)

Global path

Local trajectory

DWB sampled trajectories

Figure 3.1: Dynamic Window Approach strategy: Discrete sampling of several
velocities followed by a selection based on several criteria
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The Dynamic Window Approach (DWA), proposed in [5], is a technique to gen-
erate motion commands for a robot to follow a desired global path in the best
possible manner while avoiding dynamic obstacles. This is achieved by iterating
through the following steps 1 until the robot reaches the desired goal location:

1. Discretely sample from the robot’s control space

2. For each sampled control, perform a forward simulation from the robot’s
current state to predict what would happen if the sampled control were
applied for a short period of time

3. Score each resulting trajectory from the forward simulation, using ametric
that incorporates characteristics such as proximity to obstacles, proximity
to the goal, proximity to the global path, and speed. Discard illegal trajec-
tories (those that collide with obstacles).

4. Pick the highest-scoring trajectory and use the associated controls.

It is pertinent to note that, Step 2 in the above sequence is key to the per-
formance and usability of the motion controller for a given robot and a given
application. In other words, the choice of the model used to do the forward sim-
ulation should be as close as possible to the physical robot’s movements when
a given control input is applied.

Inmany practical uses of thismotion controller in ROS, this key component is
often overlooked and in turn leads to incorrect conclusions about the usability of
this motion controller. To some extent, the software interface for selecting the
type of the forward simulation model also contributes to the incorrect usability
conclusions. This is because, the parametric configuration allows to choose be-
tween, say, a differential drive or an omni drive simulation model, but the actual
models used for simulation can only be changed through code modification in
the motion controller implementation. Nevertheless, this level of abstraction is
sufficiently applicable tomany practical prototypical applications and hence this
motion controller is still used often by many users of the ROS navigation stack.
However, when accurate choices between candidate trajectories are to bemade,
this generalization can prove to be a deterrent to some users in adopting this
motion controller for their applications.

1Rephrased from http://wiki.ros.org/dwa_local_planner#Overview to adhere to the flow of
this text.
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3.1.2 Motivation for DWB

Due to its inherent ability to deal with dynamic obstacles, the DWA motion con-
troller is typically considered for service robot applications such as home assis-
tant robots and guidance robots at airports, museums and so forth. Further,
how well the motion controller enables key task execution requirements, such
as following a global path and avoiding dynamic obstacles, are decided by the
scoring functions as mentioned in Step 3 in Section 3.1.1. These scoring func-
tions are called critics in the software implementation in ROS. Henceforth, in this
article, we will use the term critics when referring to the scoring functions. In the
DWAmotion controller implementation, every forward simulated trajectory gets
scored by all the critics before a candidate trajectory is selected.

However, this is often not desirable because not all navigation applications
have the same global path following requirements as imposed by the critics. In
other words, using all the critics to score candidate trajectories can lead to ex-
tremely conservative candidate trajectory choices or no valid trajectory choice
at all. This is a scenario that causes the robot to perform recovery behaviors in
order to get a renewed estimate of its state. If this leads to a valid trajectory, the
robot may continue further in following the desired global path. In the worst
case, when a recovery attempt also fails due to no valid trajectory being avail-
able, a navigation failure is reported and the robot aborts its pursuit of the goal.
While such a situation might be acceptable in experimental setups, it would be
absolutely undesirable to have navigation and hence, overall task execution fail-
ures in real applications as mentioned earlier.

These limitations of the DWA implementation form the primary motivation
for the DWB motion controller. Fundamentally, DWB is a modularized and en-
hanced version of the DWAmotion controller incorporated via the following im-
plementation changes:

• Configurable selection of critics

• Customizable critics without having to change the core package binaries

• Including acceleration constraints on trajectory generation

We will elaborate on each of these points in the following section. Before
we proceed, it is important to reiterate that, fundamentally, the principles of the
DWA motion controller are very much the same in DWB and it follows the very
same sequence of steps as listed in Section 3.1.1. It is only the modularity intro-
duced by the above-mentioned changes that distinguishes the DWA and DWB
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motion controllers. Therefore, although there is no specific expansion for the
letter “B” in DWB, the author of DWB has simply selected it as a natural alpha-
betic extension of its predecessor DWA.

3.1.3 Benefits of DWB

Themost important benefit of the DWB implementation is the flexibility it brings
with its configurable selection of critics. One or more critics, that score a can-
didate forward simulated trajectory, can be configured via the specification of
the critics parameter in the yaml configuration of the navigation stack. This
parameter is specified as a list of strings, where each string corresponds to a
trajectory scoring function for a certain criteria. For example, a criterium to pe-
nalize trajectories that are above a certain euclidean offset distance from the
global path can be enabled by adding the PathDist string to the critics pa-
rameter list. Further explanations on the different kinds of standard critics are
available in the DWB GitHub documentation2.

2https://github.com/locusrobotics/robot_navigation/tree/noetic/dwb_critics#dwb_critics
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3.2 Regulated Pure Pursuit

Follow theCarrot!
The Regulated Pure Pursuit motion controller enables a mobile robot to
track a global path by continuously moving forward a target point called
lookahead point on incremental segments of a global path. For every
lookahead point, control commands are generated so that the robot starts
moving towards it and this process is repeated until the goal is reached.
This controller is a variation of the classic pure pursuit approach with en-
hancements such as collision checking and control command regulation.

Horizon

Re-planned global path

Current steering

Local trajectory

Figure 3.2: Regulated Pure Pursuit strategy: Look ahead on the path to compute
carrot target and compute feedforward steering to reach it

The Regulated pure pursuit motion controller is inspired by the pure pursuit
algorithm [4] and has beenmodified to include practical constraints such as col-
lision with obstacles and velocity regulation during the robot’s pursuit of the
lookahead point. We will elaborate on the working principles of this motion
controller by first starting with the basics of the Pure Pursuit algorithm.
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3.2.1 Basics of Pure Pursuit

The Pure Pursuit algorithm is the core component of the motion controller. In
the introductory paragraph earlier, we referred to the idea of a lookahead tar-
get. This is also oftentimes called a carrot target and typically lies on a circular
horizon around the robot’s control point as indicated in Figure 3.2. The radius of
this circle is a parameter that can be tuned as per the application requirements.
In the ROS2 implementation of this motion controller, this parameter is called
lookahead_dist.

There aremany (theoretically infinite) possibilitieswhere this lookaheadpoint
could be around the robot. To determine themost relevant lookahead point, the
global path that the robot has to follow is used as a cue. First, the robot’s current
pose is used to determine the nearest point on the global path based on the eu-
clidean norm. Then, this point is used as a reference to determine the closest of
the lookahead points on the circular horizon, which also lies on the global path
ahead of the robot. This is indicated by the yellow dot in Figure 3.2. Once the
appropriate lookahead point is determined, it is transformed from the global
coordinate frame to the robot’s local coordinate frame. Finally, this point in the
local coordinate frame is used to determine the control commands to reach the
lookahead point. These commands can be exactly computed based on the al-
gebra described in Section 2.0 of [4].

3.2.2 Regulated Pure Pursuit

The Regulated Pure Pursuit (RPP) motion controller extends the basic pure pur-
suit algorithm to enhance its applicability to a wider scope of practical problems.
As elaborated by the authors in [29], this is achieved via the introduction of the
following features:

• Active collision detection

• Velocity-scaled lookahead points

• Velocity modulation when the robot approaches the desired goal

The vanilla version of the Pure Pursuit algorithm, as described in Section
3.2.1, generates control commands based on the lookahead point with the un-
derlying assumption that there are no collisions along the way to the lookahead
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point. This is generally valid as long as the lookahead horizon is not too large.
Further, the availability of local costmap information in ROS opens up the pos-
sibility to quickly evaluate the path to the lookahead point for collisions. In the
ROS2 implementation of this motion controller in [29], a time parameter for the
maximum allowable time before a collision is introduced. In other words, a for-
ward state projection is computed using the generated control commands from
pure pursuit and the resulting robot path is evaluated for collisions. The pri-
mary motivation for this, as highlighted by the authors in [29], is to enable short
local horizons within the lookahead region for evaluating the generated control
commands when navigating in tightly confined spaces.

The next improvement in the RPP implementation is the possibility to in-
clude velocity-scaled lookahead points. The fundamental idea here is that when
a robot is navigating at higher speeds, it is logical to have a larger lookahead
horizon and adapt themotion commands based on the larger range. In essence,
this feature enables a user to have variable lookahead distances and in turn in-
fluence the control command outputs of the underlying pure pursuit algorithm.
This is because the control commands are a function of the lookahead distance.
For example, this feature can enable a robot to speed up towards its goal when
the coast is clear in the visible horizon of the onboard sensors, which are usually
larger than a fixed lookahead distance.

Finally, the last improvement in RPP is the feature of slowing down on ap-
proach to the goal. This is achieved by simply checking for the existence of
lookahead points on the global path. This relies on the basic idea that a looka-
head point beyond the goal point cannot exist. Hence, by monitoring an offset
error to the goal point from the robot’s current position, the control commands
to the robot can be proportionally reduced to ensure a slow approach to the
goal position on the global path before the robot comes to a halt.

It is important to note that the RPP motion controller only reports a colli-
sion if it is detected during the collision-checking process. However, it does not
generate an alternative path around the obstacle and depends on the global
planner to regenerate a path around the obstacles. Further, if the lookahead
horizon is small, when operating in tightly confined spaces, the generated con-
trol commands can be highly sensitive to noise because the generated control
commands always intend to reach the lookaheadpoint. In otherwords, for short
lookahead horizons, the control commands tend to change rapidly and need ad-
ditional processing before practical use.
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3.3 Path Tracking PID

High tracking performance controller

This motion controller addresses the challenge of accurately following a
predetermined path, which is also known as tracking control. Nobleo de-
veloped a high-performance path-tracking algorithm for mobile robots,
which uses the feedback and feedforward principles of control theory.

Local trajectory

Re-planned global path

l

CP

BL

l

ey

PGP
GP

Figure 3.3: Path Tracking PID strategy: Compute carrot target by projecting the
closest pose on the path (i.e. the Projected Global Path (PGP)). Velocities are
computed using a PID controller with the error between the Control Point (CP)
and the PGP

In some applications, like precision agriculture and pallet picking, it is desirable
to accurately follow a predetermined path. Prior to the release of the Path Track-
ing PID by Nobleo [12], there was no open-source motion controller with the
required level of performance. The essence of the Path Tracking PID is depicted
in Figure 3.3. The concept relies on two aspects: projection of the global path,
and accurate control of a point ahead of the robot, known as a carrot point.
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The idea behind the global path projection is to compute a path that if fol-
lowed accurately with a carrot point or control point (CP), will result in the base
link (BL) of the robot, defined at the rotation point of the robot, following the
original global path. At each update step, instead of computing the projected
path, the closest point from the base link to the path is found (i.e. the Global
Pose (GP)) and a Projected Global Pose is computed (PGP). The carrot point CP
is simply calculated by projecting the base link in the direction of the orientation
of the robot.

The next step is to generate velocity and steering commands such that as
time progresses the CP gets close to the PGP, and ideally their location stays to-
gether, i.e. the control error ey remains small as the robot progresses along the
path. To be able to achieve this, the Path Tracking PID uses concepts applied
in the control of high-precision equipment, mainly the combination of feedback
and feedforward control. The corresponding architecture is shown in Figure 3.4.

Global Pose  
Projection

BL  
poseControl Point 

Feedforward steering

PID control

Global Path

ey
_

Forward velocity

Robot

Feedforward 
control

Feedback  
control

Feedback  
steering

Figure 3.4: Path Tracking PID’s architecture uses a combination of feedforward
and feedback control. Forward velocities are purely computed as feedforward
and steering commands, a combination of feedback and feedforward.

In feedback control, the measurement of the robot’s base link with respect
to the path is used to compute a steering command that makes the robot get
closer to it. Specifically, PID control is used which stands for Proportional, Inte-
gral, Derivative control. The Proportional part uses the current position error ey,
the derivative part uses the changes in time of ey and the integral error uses the
summations of all values of ey in the past. Without going into too much depth
in control theory, assuming the robot moves at a constant velocity, when the
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path is a straight line and with proper tuning of the PID controller parameters,
it is guaranteed that a PID controller can drive the control error ey towards zero.
In practice, however, the path contains curves, which will make the PGP move
sideways as seen from the robot’s perspective. This will act as a disturbance to
the PID controller, whichmakes that the control error does not tend to zero, and
therefore, the robot will not accurately follow the desired path. To solve this is-
sue, the feedforward control concept is used.

In feedforward control, preliminary knowledge of the path and the desired
trajectory is used to generate velocity and steering commands for the vehicle.
As illustrated in Figure 3.4, two components of feedforward are used, the for-
ward velocity and the feedforward steering.

The forward velocity of the robot is generated as follows. During the first
phase, the velocity is increased at a constant acceleration towards the desired
target velocity. During the second phase, the target velocity is kept constant un-
til the third phase is reached, where the velocity is increased or decreased at a
constant rate towards the desired velocity at the end of the path (i.e. the end
velocity) which can be non-zero. Note that the second phase might be skipped
when the path is too short and thus only the (de)acceleration phases are per-
formed. In this procedure, the position of the robot is monitored to know when
to trigger the last phase.

The feedforward steering uses information of the path’s curvature to gener-
ate a steering command. It basically uses the same principle as the pure pursuit,
but instead of using the current robot’s pose towards a target ahead in the path,
the Global Pose (i.e. closest pose on the path) is used to calculate the steering
that would drive the robot towards the next pose in the path.

Because measurements are used indirectly in the feedforward calculation,
the resulting feedforward signals are commonly noise-free and smooth. It is
important to mention that the generated path needs to be sufficiently smooth
for the Path Tracking PID to achieve high accuracy. Discontinuities and high
values in the curvature will be reflected in the generated velocity and steering
commands, which in practice cannot be executed by the robot.

To conclude, if the path is properly designed, one can expect that the path
tracking error will be small. This controller has been applied in high-precision
agriculture applications, where a tractor performs work on the land [1] and
tracking errors of less than five centimeters have been achieved.
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3.4 Timed Elastic Bands (TEB)

Anon-linear optimization based controller

The Timed Elastic Band (TEB) planner formulates motion control as a non-
linear optimization problem. Such an approach has been already explored
in the scientific community. However, the TEB is the only planner that is
publicly available in ROS/ROS2. A key difference of TEB with respect to
othermethods is that it can efficiently solve the needed equations, making
it usable for mobile robots without the need for powerful computers.

Global path

Local trajectory

TEB virtual pull

Figure 3.5: Timed Elastic Bands strategy: An optimization problem is formulated
such that virtual springs with time stamps are added along the global path. The
virtual spring allows the path to be elastic and malleable to avoid obstacles.

The TEB local planner [15] is the only motion controller available in ROS/ROS2
that is based on solving a non-linear optimization problem. Thus, instead of rely-
ing on a specific strategy or function to generate velocity commands, TEB relies
on solving an optimization problem with constraints. A simplified representa-
tion of the formulated optimization problem is illustrated in Figure 3.5. Virtual
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springs are added at certain locations along the path and time stamps are added
to them. Far from obstacles, the virtual springs are not active, and the resolved
trajectory would be very close to the original path. When the robot approaches
an obstacle, the virtual springs are activated, and the trajectory is “pulled” away
from the original path.

What makes TEB successful, is the way the non-linear optimization problem
is formulated to be solved with relatively few resources, and therefore acces-
sible to be used in mobile robots with low to medium onboard compute. The
key aspects of TEB problem formulation are the following. The internal control
variable is formulated as a sequence of arcs, for which the radius can be limited
to account for kinematic constraints. As shown in Figure 3.6, the robot footprint
can be described in different ways: as a distance to a line segment, two circles,
or a polygon. Especially the first two options can reduce the number of calcula-
tions drastically with respect to a full polygon. In addition, not all poses on the
trajectory are affected when there are obstacles, but only those closest to them,
which can also be tuned by the user. In this way, the user can trade off between
accuracy, robustness and computation complexity.

The other important aspect of TEB is the way the optimization problem is
solved. Across the different versions of the TEB core developed in the last years
[27], [26], [25], the commonality is that the original non-linear optimization prob-
lem with constraints is approximated as a non-linear Least-Squares optimiza-
tion problem without constraints. In particular, they use the graph optimiza-
tion framework g2o [8] which implements a highly efficient solver. This however
comes with a price as the approximation might not describe the original prob-
lem correctly, leading to incorrect results.

Finally, it is important to mention that as with any non-linear optimization
problem, there are known issues while solving such types of problems. Firstly,
a global minimum is not guaranteed, or even to find a feasible solution. Tuning
properly can help to obtain good results and can prevent getting trapped in lo-
cal minima. However, the problem solved by TEB is still an approximation of the
original one, so correctness is not guaranteed. Moreover, the amount of param-
eters to be tuned in TEB is quite long [11], and tuning can be quite non-intuitive
due to the influence the parameters have on each other.
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Figure 3.6: TEB formulation key aspects: Footprint can be expressed as a dis-
tance to a line segment, two circles, or a polygon. Also, only a subset of the
trajectory is considered in the optimization. Images taken from [6].



4 MotionControllers Benchmark

Benchmarking

In this section, we will compare the different ROS2 motion controllers. To
make a valid and realistic comparison, we selected two robots used in real-
life applications: a care robot and a logistics robot. We also used different
scenarios to compare the performance of the different controllers.

4.1 Benchmark description

4.1.1 Robot examples

For our comparison, we have selected two robots that are used in real-life sce-
narios: a care robot and a logistics robot. They have different sizes and place-
ments of the rotation point, which highlights the challenges in motion control.

SARA

SARA is a robot brought to the market by SARA robotics[13], and it is used to
assist tasks in the healthcare sector. In the past, Nobleo has collaborated with
SARA robotics to bring new functionalities to their product [28]. In the context
of this comparison, SARA represents a robot whose footprint is relatively small
with respect to its environment. Though SARA is holonomic (i.e. it can alsomove
sideways) to generalize it to an industrial robot, we will treat it as a differential
drive robot. This is because, differential drive design is commonplace in indus-
trial AMRs for applications like logistics, maintenance and inspection.
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Figure 4.1: SARA robot [13] is used to assist in healthcare tasks.

IDA

IDA was initially a manually driven pallet truck that was made fully autonomous
by Nobleo [10]. IDA is capable of autonomously navigating in a warehouse envi-
ronment and loading and unloading pallets. The rotation point of IDA is located
close to the back of the robot, and in the front it has a steering wheel. In this
comparison, we will assume the steering wheel can rotate very fast to make a
fair comparison with a differential drive.

Figure 4.2: IDA is an autonomous pallet truck, whose autonomy feature as de-
velop by Nobleo [10].
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4.1.2 Test description

We designed three test scenarios shown in Figure 4.3 to benchmark the differ-
ent controllers.

Figure 4.3: Test scenarios: left, turn from hallway to hallway; center, turn from
hallway to hallway with an unknown obstacle; right, parking in a tight space. For
size comparison, the footprints of SARA and IDA are shown as a blue circle and
a green polygon respectively.

In the first test on the left, the robot needs to move along a hall and then
turn right to continue heading towards the target pose. With this test, we want
to check the basic ability of different controllers to drive safely. In the second
test in themiddle, a previously unseen object is placed around the corner. Here,
we will test the ability of the motion controller to deal with previously unknown
obstacles that are placed along the original path. Finally, in the third test on
the right, the robot needs to park in a tight space, depicted in red. Here we are
testing the ability of the motion controller to accurately follow the path and pro-
duce accurate movements in a tight environment. Footprints of both robots are
also shown in relation to the environment. It is expected that navigation with an
elongated robot such as IDA is more challenging compared to navigation with a
circular robot.

A single test is composed of a combination of a test scenario, a robot, and a
motion controller. In total, three test scenarios, two robots, and four controllers,
adding up to twenty-four tests are performed. For the tests we make use of the
Webots simulator [32] since it allows for easy (re)spawning of maps, robots and
obstacles. The test procedure goes as follows: A map, a robot and an obstacle
(when needed) are loaded into Webots. After launching the navigation stack in
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ROS2, a (global) plan is requested from the SmacPlanner [24] with the desired
target position. The SmacPlanner was selected due to its ability to handle a wide
range of robots and generate smooth paths. Subsequently, the corresponding
motion controller of the current test is invoked and navigation starts. The tests
have a maximum execution time, and when it is exceeded, the test is deemed
unsuccessful.

4.1.3 Test results

The test results for the SARA robot are shown in Figure 4.4. As expected all tests
for turning succeeded and there are nomajor differences in execution time. Re-
garding the test with the obstacle, it was already expected that the path tracking
PID and regulated pure pursuit would fail, since both do not circumvent unfore-
seen obstacles. The TEB local planner succeeds since it is quite flexible and a cir-
cular footprint is easily handled by its optimization approach. DWB is also able
to drive the robot safely around the obstacle, although it requires more execu-
tion time because DWB does not perform exhaustive optimization on candidate
trajectories. Finally, all controllers succeed in the parking situation. This is not
surprising since the footprint of SARA is small relative to the parking space.

turn without obstacle turn with obstacle parking
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Figure 4.4: SARA test results. Results above the horizontal dashed line mean
that the particular test did not succeed.
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The test results for the IDA robot are shown in Figure 4.5. Similar to SARA,
all tests for turning succeeded without major differences in execution time. Re-
garding the test with the unforeseen obstacle, TEB and DWB succeeded, show-
ing that DWB can also be used with large footprints given there is enough space
for maneuvering, especially DWB required additional tuning effort to make it
work in this scenario. Finally, for the parking maneuver with IDA, only TEB and
path tracking PID succeed, the former due to its flexibility and the latter due to
its accuracy. We observed DWB would drive the robot close to the path but not
very accurately, and IDA would hit a corner right at the entrance of the park-
ing spot. The regulated pure pursuit failed because by design it follows a point
ahead in the path, which makes the robot “cut corners”, and therefore IDA also
got stuck entering the parking spot.
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Figure 4.5: IDA test results. Results above the horizontal dashed line mean that
particular test did not succeed.

The results show that TEB, unlike the other planners, has great flexibility to
operate under different scenarios, and different footprints. However, we no-
ticed that during the test executions TEB at times was facing numerical issues,
and the solution trajectory was changing drastically fromone sample time to the
other. This behavior was mainly observed during the tests with IDA, which can
be caused by the high non-linearities that a non-symmetric footprint brings into
the optimization problem. Path tracking PID cannot cope with obstacles but is
able to accurately follow the original global plan. Also, its algorithm is determin-
istic and it produces reliable results.
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4.2 Selection Guidelines

From the different controller concepts and observations made during testing,
we got some insights to score each controller based on certain criteria. There-
fore, we present a concise selection guideline in Table 4.1.

Criteria DWB RPP PTPID TEB
Static known environments + + + +
Unknown obstacles ++ - - ++
Small/symmetric footprint + + + +
Large/asymmetric footprint + - ++ +
Accuracy + - ++ +
Robustness/Reproducibility + + ++ -
Computational simplicity + ++ ++ - -

Table 4.1: ROS2 motion controller selection guideline for Dynamic Window Ap-
proach B (DWB), Regulated Pure Pursuit (RPP), Path Tracking PID (PTPID) and
Time Elactic Bands (TEB).

In the criteria static known obstacles, all controllers have a similar score since
they fulfill the basic A to B navigation requirement. For unknown obstacles, TEB
scores the best, followedbyDWBwhich performswell if some tuning effort is put
into it. Regarding footprint size, all controllers scored well for small footprints.
For large footprints, meaning maneuvering in tight spaces, PTPID performs well
given the global path is correct and smooth, and TEB offers the greatest flexibil-
ity in this respect. For accuracy, PTPID is the winner, and only RPP scores low
because of its tendency to “cut corners”. PTPID also scores the best in robust-
ness because of its reproducible results, and TEB the lowest because it can face
numerical issues while solving the non-linear optimization problem. Finally, re-
garding computational simplicity, PTPID and RPP score the best because their
control law is simple, straightforward, and does not require extensive calcula-
tions. On the other hand, DWB already requires more calculations to sample
multiple velocity pair candidates, and TEB scores the lowest due to the high de-
mand for processing power.

Looking at each controller column, we can see DWB has a good balance
among the selected criteria, and it was consistently providing obstacle avoid-
ance behavior. RPP can performwell for robots with small footprints in a known
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environment and is computationally simpler than DWB. PTPID specializes in ac-
curacy and reproducibility, and finally, TEB offers great flexibility but it requires
high computation power and it can lack robustness in specific situations.

Before using this table, one should score the relevant criteria of the applica-
tion that the robot is intended for. As an example, for an autonomous tractor,
accuracy and robustness are very important. Circumventing obstacles on the
other hand is less relevant. Of course, avoiding collision along the global path
is a must that is a basic feature of any controller. Computational simplicity is
also important because many hardware elements need to be handled simulta-
neously on top of robot navigation. Taking these elements into account, one
can conclude that Path Tracking PID is a good choice for such an application.
Another example is a surveillance robot in a shopping mall. The robot has a rel-
atively small footprint with respect to the environment, accuracy is not relevant
but dealing with unknown obstacles is relevant. These aspects then make DWB
a good candidate for this application.



Conclusion

In this paper, we have taken a close look at the navigation software for mo-
bile robots provided by ROS2. We focused on the motion controller, which is
the module that is ultimately responsible for generating the velocity commands
that drive the robot through the environment. We first explained the underly-
ing mechanisms of four motion controllers available in ROS2: DWB, Regulated
Pure Pursuit (RPP), Path Tracking PID (PTPID) and Timed Elastic Bands (TEB).
These controllers were tested using two robots with commercial applications
in three different scenarios. The first robot, SARA, used in healthcare tasks, has
a small footprint with respect to the environment. The second robot, IDA, an au-
tonomous pallet truck, has a large and asymmetric footprint. The test scenarios
were focused on basic navigation, dealing with previously unknown obstacles,
and navigating in a tight environment.

In general, the different controllers have different strong suits with respect
to the evaluation criteria, making them complementary. DWB has a balanced
score which makes it suitable for a broad range of applications. RPP is compu-
tationally efficient but not very accurate. PTPID was designed for accuracy and
consistency and performs the best at it. TEB is very flexible but its lack of robust-
ness makes it less suitable for some industrial applications. Finally, a proper se-
lection of motion controller greatly depends on the application requirements.
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